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EXECUTIVE SUMMARY

by

Bradford Butman



INTRODUCTION

Two major field experiments were conducted as part of the North Atlantic 

Slope and Canyon Study: the Lydonia Canyon Experiment and the Slope 

Experiment. These studies were initiatied by the U.S. Minerals Management 

Service (MMS) and the U.S. Geological Survey (USGS) as interest in oil and gas 

exploration in the North Atlantic region moved offshore to the continental 

slope from the southern flank of Georges Bank. The major objectives of the 

field program were to provide a regional description of currents and sediment 

transport on the outer shelf and upper slope and within submarine canyons, and 

to understand the processes which cause sediment transport. A long-range goal 

of the program was to assess the long-term fate of material introduced into 

the water column or seafloor along the margin.

The continental slope is a relatively narrow transition region between 

the continental shelf and continental rise (fig. 1). Along the east coast of 

the United States, the texture of the surficial sediment changes from 

primarily sand to finer grained silt and clay just seaward of the shelf break, 

indicating a transition from an active sedimentary environment on the shelf to 

a more depositional environment on the upper slope. Because anthropogenic 

pollutants often are associated with fine-grained particles (Bothner and 

others, in press; Farrington and Boehm, in press; Morel and Schiff, 1983; 

Huggett and others, 1980) over long periods of time the slope may be a region 

of accumulation for these contaminants. Therefore, it is possible that 

particles introduced by exploratory drilling on the Outer Continental Shelf 

(OCS) may ultimately deposit on the continental slope.

The continental slope is dissected by major submarine canyons and 

numerous smaller gullies. Scanlon (1984) estimates that on the slope south of 

Georges Bank at depths shallower than 1500 m, as much as 80 percent of the
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slope is occupied by these canyons and gullies. The major canyons cut 

northward into the shelf as much as 20 km and may capture sediments from the 

shelf. The canyons may also provide a source of deep ocean water landward of 

the shelfbreak. The role of submarine canyons in the transport of sediment 

from the shelf to rise has long been of interest to marine geologists. The 

canyons also provide a variety of substrates for marine organisms and the 

diverse fauna have been the subject of several studies (Lament Doherty 

Geological Observatory, 1983; Maciolek and others, 1986).

The circulation on the outer shelf and upper slope is a complex 

transition between the flow on the shelf and the flow in the deep ocean; a 

rich diversity of currents and processes of sediment transport is expected in 

this transition region. On the continental shelf, winter storms, tidal 

currents, and the westward residual mean flow are the primary factors which 

influence the net transport of sediment (Butman, in press). At the edge of 

the shelf, sediment movement may also be caused by internal waves, Gulf Stream 

warm core rings, and more complex flows associated with meanders of the Gulf 

Stream. Storms will be less important in deeper water because the wave 

currents, of major importance in resuspending sediments on the shelf, decrease 

rapidly with increasing water depth.

Several other recent field programs provide additional observations of 

currents on the outer continental margin. The Lydonia Canyon Experiment 

complements studies of Baltimore Canyon in the Middle Atlantic Bight (Lamont 

Doherty Geological Observatory, 1983) and of Quinault Canyon off the coast of 

Oregon (Carson and others, 1986). The Shelf Edge Exchange Processes (SEEP) 

study (Department of Energy) conducted along 70° W; and the Mid-Atlantic Slope 

and Rise study (MASARS) funded by MMS, provide observations to the west of 

those made as part of the Slope Experiment (Csanady and others, submitted).



Understanding the fate of pollutants and sediments introduced onto the shelf 

and slope, which is provided by these and other programs, is essential for 

sound management of the resources of the continental margin.

FIELD MEASUREMENTS 

Lydonia Canyon Experiment

The Lydonia Canyon Experiment was conducted over a two-year period. The 

components of the program were: (1) detailed bathymetric surveys of the 

canyon and the adjacent shelf and slope; (2) surveys of the surficial sediment 

texture; (3) longterm measurements by an array of moored current meters, 

bottom tripods and sediment traps; (4) synoptic hydrographic observations; (5) 

bottom surveys utilizing sidescan sonographs and high resolution acoustic 

profiles; and (6) surveys of the canyon utilizing a research submersible. All 

of these field measurements were designed to describe the shelf and canyon 

environments and the transport of water and sediment within and between 

them. Lydonia Canyon was selected for study because it was closest to the 

exploratory drilling sites (fig. 1).

The moored array experiments were the largest component of the canyon 

experiment. Five deployments of instruments were made between November 1980 

and November 1982 (table 1; fig. 2). The measurements were designed to 

document the flow within the canyon and near the bottom over the shelf and 

slope. Measurements were made throughout most of the experiment at LCA, LCB, 

LCE (or LCS), and LCI (fig. 2) to provide continuity between deployments and 

to assess long-term variability at typical shelf, canyon, and slope 

stations. In all of the moored array experiments, instruments were deployed 

on the shelf and slope and in the canyon at depths above and below the canyon 

rim (fig. 3). Limited observations were made at two stations in Oceanographer 

Canyon (fig. 1) to compare the current regimes of two major canyons.



Table 1. Dates of moored array deployments and hydrographic cruises conducted as part of 
the Lydonia Canyon Experiment and the Slope Experiment. Roman numerals 
indicate moored array deployments. Stations indicate the locations where 
moorings were deployed in each experiment (see fig. 2 and 8).

Deployment 
Start Stop

Lydonia Canyon

I

I

II I

III II

IV III

V IV

V

Date

Experiment

November 1980

December 1980

January 1981

April 1981

September 1981

January 1982

July 1982

November 1982

Cruise

OCEANUS 88

OCEANUS 90

OCEANUS 91

OCEANUS 95

OCEANUS 104

OCEANUS 113

OCEANUS 122

OCEANUS 130

Stations

LCA, LCC, LCD, LCF, LCG,

LCA, LCB, LCE, LCH, LCI,

LCK, LCL, LCM, LCN

LCO

LCA, LCB, LCE, LCI

LCA, LCB, LCE, LCI, LCO,

LCA, LCB, LCI, LCL, LCO,

LCR, LCS, LCT, OCA, OCB,

LCA, LCB, LCU

LCM

LCJ

LCP

LCQ

OCC

Slope Experiment

I

II I

III II

III

November 1982

October 1983

March 1984

November 1984

OCEANUS 130

OCEANUS 140

OCEANUS 149

OCEANUS 159

SA, SB, SC, SD, SE

SA, SE, SF

SA, SE, SF, SG, SH, T
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67°50' 67°40' 67°30'

40°30' -

LYDONIA CANYON 
MOORED ARRAY

  CURRENT
A DEEP INSTRUMENT PACKAGE 

D SHALLOW TRIPOD

0 BOTTOM PRESSURE

Figure 2b.

40°20' -

- 40°30'

-40°20'

67°30'

Location of moorings deployed in Lydonia Canyon and on the 
adjacent shelf and slope. Not all.stations were occupied 
simultaneously (see text).
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Hydrographic observations were made on all mooring deployment and 

recovery cruises, and on one cruise midway through Deployment I (table 1). 

The cruise track for OCEANUS 91 is typical for these hydrographic cruises 

(fig. 4); sections were made across the shelf both to the east and west of 

Lydonia, along the canyon axis, and across the axis, near both the mouth and 

head of the canyon. At each station, a Neil Brown Instrument Systems profiler 

was used to measure temperature, pressure, conductivity, light transmission (a 

measure of the amount of suspended material in the water), and oxygen. These 

hydrographic sections show the location of the shelf-water/slope-water front, 

the influence of Gulf Stream warm core rings, and the changes in the 

hydrographic structure between shelf and canyon.

EG&G Vector Averaging Current Meters (VACMs) deployed on taut subsurface 

moorings were used in the canyon experiment (fig. 5). Some of the VACMs were 

modified to also measure pressure, light transmission, or light transmission 

and conductivity (to determine salinity). Two specialized instrument packages 

were used to document near-bottom currents and sediment movement. A bottom 

tripod system that measured near-bottom current, temperature, pressure, and 

light transmission, and photographed the sea-floor was deployed at stations 

around the head of Lydonia Canyon (Butman and Folger, 1979; fig. 6). A second 

instrument package, which measured the same variables except pressure, was 

used in the canyon axis where the bottom tripod system was unsuitable because 

of the rough topography (fig. 7). Sediment traps of several sizes and shapes 

were deployed on the subsurface moorings to estimate particle flux and the 

physical and chemical composition of the suspended material.
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Figure 4. Cruise track for OCEANUS 91, typical of the hydrographic cruises 
made as part of the Lydonia Canyon Experiment.
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MOORING 204(TRIPOD)
207(SUBSURFACE) 

STATION LCA, SHELF
LATITUDE: 40*34.21'N 
LONGITUDE : 67°44.55'w 
DEPTH : IOOM

r^i

9

TRIPOD

74 M  

80M  

95M  

IOOM

SURFACE MARKER 
BUOY

30M 1/2" CHAIN

37" SPHERE 

IOM 3/8" CHAIN

SEDIMENT TRAP(STI02) 

2M 3/8" CHAIN

VACM W/TRANSMISSION 
8 CONDUCTIVITY 
(V628TC)

ISM 3/8" CHAIN

RELEASE W/ 
SEDIMENT TRAP (STIOO)

2M 3/8" CHAIN

1700 LB WET WEIGHT 
ANCHOR

60 M 3/8" WIRE

90 M 1/2" CHAIN

1700LB WET WEIGHT

Figure 5a. Schematic of mooring 204 and 207 at LCA, typical of moorings
deployed on the shelf as part of the Lydonia Canyon Experiment. 
The surface buoys mark the location to help fisherman avoid the 
site.
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MOORING 211
STATION LCE, CANYON AXIS
LATITUDE: 40° 25.38'N 
LONGITUDE :67°39.88'W 
DEPTH: 600M

116 M

2I6M

435M

441M

581 M

595 M

600M 

41 SPHERE W/ RADIO 8 LIGHT 

10M 3/8" CHAIN

VACM W/TRANSMISSION (V442T) 

88 M 3/16" WIRE 

(4) 17"GLASS BALLS

5M 3/8" CHAIN

VACM W/TRANSMISSION (V443T)

5 M 3/8" CHAIN 

203 M 3/16" WIRE

(4) I?" GLASS BALLS

5M 3/8" CHAIN 

SEDIMENT TRAP (STII8) 

2M 3/8" CHAIN 

VACM W/PRESSURE (VIIIP)

25M 3/16" WIRE 

34 M 3/16" WIRE 

50M 3/16" WIRE

(20) 17" GLASS BALLS

IOM 3/8" CHAIN 

SEDIMENT TRAP (STII7)

I2M 3/8" CHAIN 
SWIVEL

DEEP INSTRUMENT PACKAGE (V5I8T,STII4)

SWIVEL
2M 3/8" CHAIN

2200 LB WET WEIGHT ANCHOR W/ 
12 LB DANFORTH ATTACHED DIRECTLY

Figure 5b. Schematic of mooring at LCE, typical of moorings deployed 
Lydonia Canyon and on the continental slope as part of the 
Lydonia Canyon Experiment.
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Slope Experiment

The Slope Experiment included long-term measurements by an array of 

current meters and sediment traps and synoptic hydrographic observations. 

Three deployments of instruments were made between November 1982 and 

November 1984 (table 1; fig. 8). The instruments were deployed in two cross- 

slope transects, one near 69°30 T W and one near 70° W. Additional moorings 

along the slope at 500 m were used to assess along-slope coherence and 

variability. Instruments were maintained at 100 meters above bottom (mab) at 

station SE and SA throughout most of the experiment to assess long-term 

variability. During deployment 3, moorings were deployed on a local 

topographic high (station SG) and in an adjacent topographic low (station SH) 

at about 1200-m water depth to compare these slope environments. Measurements 

of sediment texture and infauna were also made at these locations as part of 

the Study of Biological Processes on the North Atlantic Slope and Rise 

(Maciolek and others, 1986). Hydrographic observations were made on all 

mooring deployment and recovery cruises. The cruise track for OCEANUS 140, 

where eight sections were made across the outer shelf to the upper slope 

(fig. 9), is typical of the hydrographic cruises.

RESULTS 

Canyon Geometry and Sediment Texture

Lydonia Canyon, as defined by the 200 m isobath, cuts northward into the 

northwestern Atlantic Continental margin approximately 20 km from the shelf 

edge (figs. 1, 10). The canyon is only a few kilometers (km) wide near the 

head and about 5 km wide near the mouth at the edge of the shelf. The canyon 

axis is sinuous, and there are numerous side gullies and spurs along the 

walls. Deep Submersible Research Vessel (DSRV) ALVIN dives show that the
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67°50' 

40°35
67e45° 67°40' 67e35' 67°30'

40°30' -

40°25' -

40°20'

40e l5'

40"35'

- 40e30'

-40-25'

40°20

67e50' 67 e45' 67*40' 67°35' 67°30'
40°I5'

Figure 10. Bathymetric map of Lydonia Canyon (simplified from Butman 
and Moody, 1984).
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canyon walls are almost vertical in some parts of the axis at axis depths 

below about 400 m. The average slope of the walls ranges from 10-20° while 

the slope along the axis floor is 1-5°.

The surficial sediment on the southern flank of Georges Bank becomes 

gradually finer to the west and toward deeper water, primarily reflecting the 

strength of the tidal currents (Butman, in press). Superimposed on this 

regional pattern are smaller scale changes apparently associated with the 

canyons. Finer grained sediments, primarily very fine sand and silt, occur in 

lobes about 10 km wide both to the east and west of Lydonia Canyon 

(fig. 11). Along the axis of the canyon, there are significant changes in the 

texture of the surficial sediments. Increased concentrations of silt plus 

clay occur near the head around LCB and coarser sediments near LCS and LCE 

(fig. 12). At depths greater than 600 m, the sediments are progressively 

finer with depth; there is almost no sand at 1600 m.

Based on high-resolution seismic-reflection profiles, Twichell (1983) 

inferred that the finer-grained sediments near the canyon head are of Holocene 

age, that they are as much as 25 m thick and, in some places, are draped over 

the existing topography. Cores obtained near LCU show accumulation rates of 

about 60 cm/1000 yrs. Thus the geological and geochemical information  

sediment texture, geometry, and accumulation rates which reflect the net 

transport of sediment over thousands of years, show that sediments are 

accumulating in the head of Lydonia Canyon, at least at depths shallower than 

about 500 ra. The fine sediments deep in the canyon also imply accumulation 

there.
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AXIS OF LYDONIA CANYON 
SURFACE SEDIMENT TEXTURE

LB3I2 LCA LCB LCE

^ 500

£]IOOO

1500

SAMPLE DEPTH
o

KM

Figure 12. Surficial sediment texture along the axis of Lydonia Canyon, 
Samples were obtained from the submersible ALVIN.
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Currents

The current observations made in Lydonia Canyon and on the shelf and 

slope show a rich diversity in the strength, orientation, and frequency of 

current fluctuations. Within the canyon, the currents are channelled by the 

topography. Currents oscillate up and down-canyon, primarily at the 

semidiurnal tidal period. These current fluctuations are not always in phase 

with the well-defined tidal currents on the shelf, and the amplitude of the 

fluctuations changes with time. The fluctuations sometimes occur in short 

bursts or packets of a few days duration. The current fluctuations are also 

not symmetric in time (i.e., the strength and duration of the up-canyon flow 

is not the same as the down-canyon flow) especially toward the canyon head. 

This assymmetry in flow, which has important implications for the transport of 

sediment, probably results from the complicated topography, bottom slope, and 

stratification of the water in the canyon. Current fluctuations are 

intensified toward the bottom in the canyon.

Above the canyon rim and on the shelf landward of the shelf break, the 

currents are dominated by the semidiurnal tidal currents which flow across 

isobaths, and by low-frequency currents, some caused by winds, which are 

oriented parallel to the isobaths. There is also a well-defined weak residual 

flow toward the southwest at 1-5 cm/s. The canyon apparently has little 

effect on the mean, tidal, or low-frequency currents above the rim.

On the slope, the currents at water depths between about 150 m and 500 m 

are strongly influenced by the currents associated with Gulf Stream warm core 

rings (fig. 13a). These rings are about 100 km in diameter and are formed 

from northward meanders of the Gulf Stream. The rings drift slowly westward 

in the slope water until they are reabsorbed by the Gulf Stream near Cape 

Hatteras or by interaction with meanders of the stream (Lai and Richardson,
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67°50' 67'40' 67«30'

LYDONIA CANYON 

5

MEAN EULERIAN CURRENT 
(Schematic)

MID-DEPTH
#  NEAR-BOTTOM
*- GS EDDY 

---*- CANYON WALL

-,40'30'

40*20 - - 40° 20

6?°50' 67'40' 67'30'

Figure 13a. Preliminary schematic of the Eulerian mean flow on the shelf and
slope adjacent to Lydonia Canyon and along the walls of the canyon. 
Solid lines indicate the mid-depth flow and dotted lines the 
near-bottom flow. On the slope, the arrows indicate flow in the 
upper 100-200 m. The heavy dashed lines indicate the mean flow 
when Gulf Stream eddies are located to the south of the canyon 
and the solid lines indicate flow in the absence of eddies. The 
light dashed lines indicate flow along the canyon wall just below 
the level of the adjacent shelf (at about 150 m at the two locations 
in the head of the canyon, and at about 200 m at the two stations 
near the mouth of the canyon).
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1977; Halliwell and Mooers, 1979; Richardson, 1983; Joyce, 1984; Beardsley and 

others, 1985; Butman, in press). The clockwise circulation around the rings, 

sometimes at speeds approaching those in the stream, causes strong eastward 

flow along the outer edge of the shelf when the rings drift close to the 

shelfbreak. During the Lydonia Canyon Experiment, warm core rings affected 

the flow along the outer shelf and upper slope about 30 percent of the time. 

During the strongest ring events, eastward currents exceeded 80 cm/s and 

influenced the flow to about 500 m along the upper slope. Eastward flows 

extended shelfward to about the 150-m isobath at depths above the canyon rim 

(LCE) but not to the 110-m isobath (LCB). Rings may affect the flow within 

the canyon by generating packets of high-frequency current fluctuations. Near 

the bottom over the slope at LCI, SA, SE, and SF, there was a persistent 

downslope Eulerian mean flow.

Along the canyon axis, the net flow near the bottom was down-canyon at 

LCB and up-canyon at LCS (fig. 13b). Net flow was up-canyon at 50 mab at LCB 

and was down-canyon 100 mab at LCE. These observations suggest a bottom- 

intensified residual circulation that traps material in the canyon head. Net 

near-bottom flow at LCE and LCH was weak and hot significant. Along the walls 

of the canyon at about 200 m, the observations suggest inflow along the 

eastern side (at LCF, LCR, and LCD) and outflow on the western side (at LCC, 

LCT, and LCG).

The convergence in the mean near-bottom flow toward the canyon head is 

one of the most important observations of the canyon experiment. However, 

current measurements made at fixed locations, called Eulerian measurements, do 

not always indicate the net transport of water or particles (called the 

Lagrangian current) if there are large vertical or horizontal changes in the 

current field. For example, water particles could travel past the current
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STATION LCA 1C* LCS

500

a. 
LUo

1000

1500

ICET~ LCIT~ LCJ LCH i

5 cm /sec

LYDONIA CANYON
MEAN EULERIAN CURRENT

(Schematic)

0 5km 
i .... i

Figure 13b. Preliminary schematic of Lydonia Canyon showing upeanyen-downcanyon 
component of the mean Eulerian current at LCB, LCS and LCE along the 
canyon axis. Note that the mean Eulerian current may not indicate 
actual Lagrangian water-particle trajectories. The convergence in 
the near-bottom flow between LCS and LCB may partially cause the 
deposit of fine-grained sediments which occur in the upper part 
of the canyon. If the Eulerian and Lagangian mean flow are 
equivalent, the convergence also suggests outflow between about 
300-400 m, or small closed recirculation cells along the bottom. 
Data on the adjacent shelf and slope suggests westward flow 
across the canyon above the level of the canyon rim.
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meter and recirculate in relatively small vertical or horizontal cells. The 

increase in the residual flow toward the bottom along the axis, where the 

current fluctuations are also largest, suggests that the observed net Eulerian 

flow is not the trajectory of water particles. The Eulerian flow probably 

does reflect the direction of transport of sand (see below).

The near-bottom current speeds (fig. 14) qualitatively reflect the 

surficial sediment texture in Lydonia Canyon (fig. 12). Currents were weakest 

deep in the canyon at 1600 m at LCH, where there is no evidence for active 

sediment movement and the sediments are all silt and clay. Currents were 

stronger near the canyon head, and were strongest at about 600 m where the 

sediments were coarsest.

Distribution of suspended particles

The hydrographic sections along the axis (fig. 15), the moored 

transmissometer observations, and the sediment trap observations (fig. 16) all 

indicate increased sediment concentrations in the water near the bottom toward 

the head of the canyon. The profiles of beam attenuation show an increase in 

particle concentrations in a layer 50 to 100 m thick above the bottom, and the 

moored observations show that the concentrations of suspended sediments near 

the bottom change .rapidly with time as fine particles are resuspended or 

advected past the instrument from elsewhere in the canyon (fig. 17, 18). The 

amount of material caught in the sediment traps increased logarithmically 

toward the bottom at LCB, suggesting frequent local resuspension. The head of 

Lydonia Canyon might be described as an "active sink", where fine particles 

not only accumulate, but are also frequently resuspended from the seafloor. 

This resuspension may allow fine particles to strip dissolved pollutants from 

the water column. Increased inventories of ^lOp^ and 239,240pu .j_n

26
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o:

Figure 14. Histogram of near-bottom currents at stations along the axis of 
Lydonia and Oceanographer Canyons (fig. 2). The curves show the 
percent of time that the current exceeds the speed given along the 
X-axis.
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LYDONIA CANYON

-40°30'

-40°20

67°50' 67°40' 67°30'

Figure 16 . Histograms showing the flux of resuspended sediment (g/m /day) at 
different heights above the bottom; F-j-j- 5 mab; ^Jj- 20-26 mab; 

50 mab; ^|- 100 mab; | |» 30C mab.
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REPRODUCED FROM BEST AVAILABLE COPY

Figure 18. Bottom photographs at LCB obtained by means of Deep Instrument 
Package showing typical bottom microtopography. The anchor is 
about 81 cm (32") in diameter. The top photograph was obtained 
Dec. 9 at 2302 EST. Up-canyon is toward the top of the photograph, 
The bottom photograph was obtained Dec. 10 at 0458. Suspended 
sediment concentration is so large that bottom is obscured from 
view. See figure 17 for time series data obtained at same period. 
The photographs illustrate the large sudden changes in suspended 
sediment concentrations typical of the canyon axis.
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surfical sediments in the axis are consistent with this hypothesis.

Sediment transport

The transport of sand-sized material along the axis of Lydonia Canyon and 

on the adjacent shelf and slope was calculated using the current observations 

and a one-dimensional model of sediment transport in the bottom boundary layer 

(based on Grant and Madsen, 1979; Grant and Glenn, 1983). The calculated 

transports show a net down-canyon transport of sand at the head of the canyon 

(at LCU and LCB) and up-canyon transport at LCS (550 m). The calculated 

transports qualitatively agree with the measured accumulation rates. Most of 

the along-axis transport is caused by the asymmetrical tidal and higher 

frequency current fluctuations. At 1600 m, there was no resuspension or 

transport of the existing sediments.

Storms resuspend sediment on the continental shelf. On the southern 

flank of Georges Bank, the resuspended sediment is carried primarily parallel 

to the shelf isobaths and may intersect the canyon rim. This is most likely 

when the flow over the shelf is to the southwest and the near-bottom flow is 

also slightly off-shelf (down-welling). This storm transport should be 

largest in shallower water toward the canyon head where oscillatory currents 

associated with surface waves enhance the bottom stress.

Sediment traps in the head of Lydonia Canyon trapped 2 to 3 times more 

material during winter when storms were frequent than during the tranquil 

summer. In addition, the concentration of barium, a major component of the 

drilling mud discharged on Georges Bank, increased in the near-bottom sediment 

traps deployed in the head of the canyon (station LCB, fig. 2) during the last 

deployment of the traps from July to November 1982. This period included the 

period of drilling at block 357 and block 273 (fig. 2a), both near Lydonia
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Canyon. In addition, a major storm in October 1982 casued heavy sediment 

resuspension on the shelf which may have contributed to the transport from 

shelf to canyon. These observations are direct evidence of transport of 

sediment from the shelf to the canyon head on time scales less of less than 

one year.

Other Canyons

Near-bottom currents measured in Oceanographer Canyon were much stronger 

than in Lydonia or Baltimore Canyons (Lament Doherty Geological Observatory, 

1983). For example, at about 600 m in the axis, currents 5 mab exceeded 

40 cm/s about 23 percent of the time in Oceanographer Canyon, but only about 

10 percent of the time in Lydonia (fig. 14). Sediment traps at comparable 

depths along the canyon axis trapped about 1.3 times more material in 

Oceanographer than Lydonia. In Oceanographer Canyon, the sediments along the 

axis are medium to coarse sand, and there are sand waves or dunes as high as 

3 m having wavelengths up to 15 m along the axis from the head to at least 

600 m (Valentine and others, 1984). In contrast, the sediments along the axis 

of Lydonia are primarily fine and very fine sand, and large bedforms are 

observed only in a limited region at about 600 m. The large dunes in 

Oceanographer were observed to be asymmetrical down-canyon at about 250 and 

600 m water depth and asymmetrical up-canyon at about 270 and 350 m. These 

directions are consistent with the observed net down-canyon Eulerian flow at 

227 m and 560 m in Oceanographer, but also suggest cells of net up-canyon and 

down-canyon flow along the axis.

Based on these observations, it is clear that the major canyons along the 

southern flank of Georges Bank differ in size, shape, and sedimentary 

environment. Some of the canyons may trap fine material near their heads
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while in others, the currents are strong enough to winnow and remove all fine 

material. Additional surveys of the sediment texture and hydrography are 

required to determine the sedimentary environments of other canyons.

Currents on the slope

The near-bottom observations show that the current speed decreases with 

depth across the slope. Below about 500 ra, currents strong enough to 

resuspend the sediments occur only a few percent of the time, and current 

speeds weak enough to allow particles to settle occur more than 30 percent of 

the time. Particles reaching the seafloor at depths greater than 500 m will 

probably remain there.

The net flow over the slope is generally parallel to the isobaths at 1-10 

cm/sec. Low-frequency fluctuations, also oriented along isobaths, are about 

10-20 cm/s. Fine particles introduced near the surface take days to settle, 

and will be dispersed over wide areas before reaching the seafloor. Near the 

bottom, the strongest flows occur in the downslope direction and there is a 

persistent net downslope flow, both of which cause off-shelf and downslope 

transport of sediment near the bottom.

Instrument calibrations

Beam transmissometers were used extensively in the Canyon and Slope 

Experiments to indicate the concentration of suspended particles in the water 

column. Laboratory calibrations show that the sensitivity of transmissometers 

depends on the size of the particles in the water column as well as 

concentration. Thus, in situations where the size as well as the number of 

particles change with time, it is extremely difficult to accurately determine 

the magnitude of the change in suspended concentration for observed changes in
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light transmission. Additional methods for determining particle size and 

concentration as a function of time are needed.

Sediment traps were used to estimate the vertical flux of material 

through the water column and to characterize the type of material in 

suspension. Based on a field comparison, traps of different size and shape 

collected material at different rates. The relative catch rates differed by 

as much as a factor of 5 between the traps used in this experiment and there 

is no way to determine which trap, if any, most closely measures the true flux 

of particles to the seafloor. Catch rates obtained from traps that have 

different hydrodynamic characteristics cannot be compared directly. Sediment 

traps must be calibrated in the laboratory for the current speeds and particle 

sizes which occur in the field.

MAJOR FINDINGS

The measurements made in the Lydonia Canyon Experiment and the Slope 

Experiment show:

1. Sediments from the shelf are transported into the head of Lydonia Canyon 

and accumulate there. These fine-grained sediments are frequently 

resuspended. Based on elevated inventories of 21Op^ an(j 239, 240pu> t^e 

sediments in Lydonia Canyon scavenge pollutants from the water column. 

Thus the head of Lydonia Canyon is a sink for fine sediments and a 

potential sink for pollutants introduced onto the shelf.

2. The concentration of barium, a major component of drill muds used during 

exploratory drilling on the south flank of Georges Bank, increased in the 

head of Lydonia Canyon during the period when exploratory wells were 

drilled near the canyon on the shelf. This is direct evidence for 

transport of shelf material into the canyon.
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3. The sedimentary and hydrographic regime in the major canyons on the 

southern flank of Georges Bank are not the same. In Oceanographer Canyon, 

the surficial sediments along the axis are coarser than in Lydonia and the 

currents are stronger. Little fine-grained sediment accumulates in the 

head of Oceanographer Canyon.

4. The current flow pattern within the canyon is complex. There is evidence 

for down-canyon transport near the head in Lydonia, Oceanographer, and 

Baltimore Canyons and there is up-canyon transport in Lydonia at depths of 

about 500 m. Additional measurements are needed to fully resolve the 

spatial variability in the direction of transport along the axis and its 

importance in determining the accumulation of sediments along the axis 

floor.

5. The canyons are not tranquil. The strongest flows occur at semidiurnal 

tidal periods, but are not always directly coupled to the tide on the 

shelf. Short duration packets of fluctuations occur in the canyon, some 

apparently generated by the passage of Gulf Stream warm core rings.

6. Gulf Stream warm core rings strongly affect the flow along the outer edge 

of the shelf. There is a net eastward flow in excess of 50 cm/s 

associated with the strongest ring events.

7. Transport of sediment at the outer edge of the shelf is in the downslope 

direction. At water depths below 500 m, the currents are rarely strong 

enough to resuspend the existing sediments and particles reaching the 

seafloor should remain there.
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